
Trustworthy AI Systems

-- Robustness of AI

Instructor: Guangjing Wang
guangjingwang@usf.edu
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Last Lecture

• Accountability

• Detecting AI-generated Content

• Watermarking Techniques

• Evading Watermarking-based Detection 
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This Lecture

• Uncertainty and Robustness

• Source of Uncertainty

• Measure the Quality of Uncertainty

• Reduce Uncertainty and Enhance Robustness
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What do we mean by Uncertainty?
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Return a distribution over predictions rather than a 

single prediction.

● Classification: Output label along with its 

confidence.

● Regression: Output mean along with its 

variance.

Good uncertainty estimates quantify when we can 

trust the model’s predictions.
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What do we mean by Out-of-Distribution Robustness?
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I.I.D.     pTEST(y,x) = pTRAIN(y,x)

(Independent and Identically Distributed)

O.O.D. pTEST(y,x) ≠ pTRAIN(y,x) 
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What do we mean by Out-of-Distribution Robustness?
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I.I.D.              pTEST(y,x) = pTRAIN(y,x)

O.O.D.  pTEST(y,x) ≠ pTRAIN(y,x) 
Examples of dataset shift:

● Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.

● Open-set recognition. New classes may appear at test time.

● Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.



ImageNet-C: Varying Intensity for Dataset Shift

11/18/24 CIS6930 Trustworthy AI Systems 7

I.I.D test set

Increasing dataset shift

Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

https://arxiv.org/abs/1903.12261


ImageNet-C: Varying Intensity for Dataset Shift
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I.I.D test set

Increasing dataset shift



Neural networks do not generalize under covariate shift
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● Accuracy drops with 
increasing shift on 
Imagenet-C.

● But do the models know 
that they are less 
accurate?



Neural networks do not know when they don’t know
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● Accuracy drops with increasing 
shift on Imagenet-C

● Quality of uncertainty 
degrades with shift
-> “overconfident  mistakes”



Models assign high confidence predictions to OOD inputs
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Example images where model assigns >99.5% confidence.

Image source: “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images” Nguyen et al. 2014

https://arxiv.org/abs/1412.1897


Healthcare (1)
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Diabetic retinopathy detection from fundus images Gulshan et al, 2016 

Cost-sensitive decision making

Healthy Diseased

Healthy 0 10

Diseased 1 0

True label

Predicted 
label

https://jamanetwork.com/journals/jama/fullarticle/2588763


Healthcare (2)
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● Use model uncertainty to decide when to trust the model or to defer to a human. 

● Reject low-quality inputs.

Diabetic retinopathy detection from fundus images Gulshan et al, 2016 

Model

Confidence > Threshold 

Input

Yes No

Trust model 
predictions

Defer to 
Human

https://jamanetwork.com/journals/jama/fullarticle/2588763


Self-driving Cars
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Dataset shift:

● Time of day / Lighting
● Geographical location (City vs suburban)
● Changing conditions (Weather / Construction)

Image credit: Sun et al, Waymo Open Dataset

 

   

https://waymo.com/open/about/


Open Set Recognition
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● Example: Classification of 

genomic sequences

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Open Set Recognition
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● Example: Classification of 

genomic sequences

● High accuracy on known 

classes is not sufficient

● Need to be able to detect inputs 

that do not belong to one of the 

known classes



Conversational Dialog Systems
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● Detecting out-of-scope utterances

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction”

https://arxiv.org/abs/1909.02027


Safety

Graceful 
failure

Decision making

Uncertainty &
Out-of-Distribution 

Robustness

Reinforcement 
learning

Active learning
Lifelong learning

Bayesian 
optimization

Open-set
recognition

Trustworthy
ML

All models are wrong, but models that know when they are wrong, are useful.

Uncertainty in Other Areas
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This Lecture

• Uncertainty and Robustness

• Source of Uncertainty

• Measure the Quality of Uncertainty

• Reduce Uncertainty and Enhance Robustness
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Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data 

(subject to model identifiability)
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Sources of uncertainty: Model uncertainty
● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data (subject 

to model identifiability)

● Models can be from same hypotheses class (e.g. 

linear classifiers in top figure) or belong to 

different hypotheses classes (bottom figure)
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Sources of uncertainty: Data uncertainty
● Labeling noise (ex: human disagreement)

● Measurement noise (ex: imprecise tools)

● Missing data (ex: partially observed features, 

unobserved confounders)

● Also known as aleatoric uncertainty

● Data uncertainty is “irreducible*”

○ Persists even in the limit of infinite data

○ *Could be reduced with additional 

features/views
Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements” 
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https://openreview.net/forum?id=rJl8BhRqF7


This Lecture

• Uncertainty and Robustness

• Source of Uncertainty

• Measure the Quality of Uncertainty

• Reduce Uncertainty and Enhance Robustness
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How do we measure the quality of uncertainty?

Calibration Error = |Confidence  -  Accuracy|

predicted probability of 

correctness

observed frequency of 

correctness
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How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with

80% probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Calibration Error = |Confidence  -  Accuracy|
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How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

• Bin the probabilities into B bins.

• Compute the within-bin accuracy and within-bin predicted confidence. 

• Average the calibration error across bins (weighted by number of points in each bin).

For regression, calibration corresponds to coverage in a confidence interval.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?
Expected Calibration Error

 [Naeini+ 2015]:

Image source: Guo+ 2017 “On calibration of modern neural networks”

Confidence > Accuracy

=> Overconfident
Confidence < Accuracy

=> Underconfident
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599


How do we measure the quality of uncertainty?
Expected Calibration Error [Naeini+ 2015]:

Note: Does not reflect accuracy. 

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True
label

0 0 0 0 0 0 0 1 1 1 Accurate? Calibrated?

Model 
prediction

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


Measure generalization to a large collection of real-world shifts. A large collection of tasks 
encourages general robustness to shifts (ex: GLUE for NLP).

● Novel textures in object recognition.
● Covariate shift (e.g. corruptions).
● Different sub-populations (e.g. geographical location).

How do we measure the quality of robustness?

Nearby video frames
(ImageNet-Vid-Robust, YTBB-Robust)

Multiple objects and poses
(ObjectNet)

Different renditions
(ImageNet-R)

11/18/24 CIS6930 Trustworthy AI Systems 29

https://gluebenchmark.com/


This Lecture

• Uncertainty and Robustness

• Source of Uncertainty

• Measure the Quality of Uncertainty

• Reduce Uncertainty and Enhance Robustness
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Neural Networks with SGD (1)
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Nearly all models find a single setting of parameters to maximize the probability conditioned on 

data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!



Neural Networks with SGD (2)
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Nearly all models find a single setting of parameters to maximize the probability conditioned on 

data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!

Data uncertainty



Neural Networks with SGD (3)

11/18/24 CIS6930 Trustworthy AI Systems 33

How do we get uncertainty?

● Probabilistic approach

○ Estimate a full distribution for 

● Intuitive approach: Ensembling

○ Obtain multiple good settings for 

Problem: results in just one prediction per example
*No model uncertainty*



Model: A probabilistic model is a joint distribution of outputs y and parameters      given inputs x.

Training time: Calculate the posterior, the conditional distribution of parameters given 

observations.

Prediction time: Compute the likelihood given parameters, each parameter configuration of which is 

weighted by the posterior.

Probabilistic Machine Learning
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Bayesian Neural Networks
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Bayesian neural nets specify a distribution over 
neural network predictions.

This is done by specifying a distribution over neural 
network weights             .

We can reason about uncertainty in models away 
from the data!

Image source: Dusenberry+ 2020

https://arxiv.org/abs/2005.07186


• VI casts posterior inference as an optimization problem.

• Posit a family of variational distributions over such as mean-field,

• Optimize a divergence measure (such as KL) with respect to λ to be close to the  posterior .

Variational inference (VI) D is a collection of possible models
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Bayesian Neural Networks with SGD
The loss function in variational inference is

Sample from q to Monte Carlo estimate the expectation. Take gradients for SGD.

Likelihood view. The negative of the loss is a lower bound to the marginal likelihood.

Code length view. Minimize the # of bits to explain the data, while trying not to pay many 
bits when deviating from the prior.

Check out [Approximate Inference Symposium, Jan 2021]

11/18/24 CIS6930 Trustworthy AI Systems 37

http://approximateinference.org/


Ensemble Learning
● A prior distribution often involves the complication of approximate inference.

● Ensemble learning offers an alternative strategy to aggregate the predictions over a 
collection of models.

● Often winner of competitions!

● There are two considerations: the collection of models to ensemble; and the 
aggregation strategy.

• Popular approach is to average predictions of independently trained models, forming a 
mixture distribution.

• Many approaches exist: bagging, boosting, decision trees, stacking.
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Monte Carlo Dropout

Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
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Deep Ensembles
Idea: Just re-run standard SGD training 
but with different random seeds and 
average the predictions

● A well known trick for getting 
better accuracy and Kaggle 
scores

● We rely on the fact that the loss 
landscape is non-convex to land 
at different solutions

○ Rely on different 
initializations and SGD noise
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Hyperparameter Ensembles

Deep ensembles differ only in random seed. By expanding the space of 

hyperparameters we average over, we can get even better accuracy & 

uncertainty estimates.

● Run random search to generate a set of 
models.
○ Include random seed as part of the 

search space.

● Greedily select the K models to pool.
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Efficient Ensembles by Sharing Parameters (1)

Parameterize each weight matrix as a new weight matrix W 
multiplied by the outer product of two vectors r and s.

There is an independent set of r and s vectors for each 
ensemble member; W is shared.

Known as BatchEnsemble.
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BatchEnsemble has a convenient vectorization.

Duplicate each example in a given mini-batch K times.

The model yields K outputs for each example.

Can interpret rank-1 weight perturbations as feature-
wise transformations.

Efficient Ensembles by Sharing Parameters (2)
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Both aggregate predictions over a collection of models. There are two core distinctions.

In the community, it’s popular to cast one as a “special case” of the other, under trivial settings. 
However, Bayes and ensembles are critically different mindsets.

Bayes vs Ensembles: What’s the difference?

Bayesian model averaging is not model combination. Minka 2002
Bayesian Deep Ensembles via the Neural Tangent Kernel. He, Lakshminarayanan, Teh, NeurIPS 2020

The space of models.
Bayes posits a prior that weighs different 
probability to different functions, and over an 
infinite collection of functions.

Model aggregation.
Bayesian models apply averaging, weighted by 
the posterior.

Ensembles weigh functions equally a priori and 
use a finite collection

Ensembles can apply any strategy and have non-
probabilistic interpretations.
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https://tminka.github.io/papers/minka-bma-isnt-mc.pdf
https://arxiv.org/abs/2007.05864


Simple Baseline: Recalibration
For classification, modify softmax probabilities 
post-hoc.

Temperature Scaling.

1. Parameterize output layer with scalar T.

Minimize loss with respect to T on a separate 
“recalibration” dataset.

Caveat: Dataset shift...
Image source: Guo+ 2017 “On calibration of modern neural networks”
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https://arxiv.org/abs/1706.04599


Uncertainty Baselines
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High-quality implementations of baselines on a 
variety of tasks.

Ready for use:  7 settings, including:

● Wide ResNet 28-10 on CIFAR
● ResNet-50 and EfficientNet on ImageNet
● BERT on Clinc Intent Detection

14 different baseline methods.

Used across 10 projects at Google.

Collaboration with OATML @ Oxford, unifying 
github.com/oatml/bdl-benchmarks.

http://github.com/oatml/bdl-benchmarks
http://google3/third_party/py/edward2/baselines/cifar


Lightweight modules to evaluate a model’s robustness and 
uncertainty predictions.

Ready for use:

● 10 OOD datasets
● Accuracy, uncertainty, and stability metrics
● Many SOTA models (TFHub support!)
● Multiple frameworks (JAX support!)

Enables large-scale studies of robustness 
[Djolonga+ 2020].

Collaboration lead by Google Research, Brain Team @  Zurich.

github.com/google-research/robustness_metrics

Robustness Metrics
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https://arxiv.org/abs/2007.08558
http://github.com/google-research/robustness_metrics


References

• Practical Uncertainty Estimation & Out-of-Distribution 
Robustness in Deep Learning
• Video: https://slideslive.com/38935801/practical-uncertainty-estimation-

outofdistribution-robustness-in-deep-learning
• Link: https://neurips.cc/Conferences/2020/Schedule?showEvent=16649
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https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning
https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning
https://neurips.cc/Conferences/2020/Schedule?showEvent=16649
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