Trustworthy Al Systems

-- Robustness of Al

Instructor: Guangjing Wang

guangjingwang@usf.edu
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Last Lecture

* Accountability
* Detecting Al-generated Content
* Watermarking Techniques

* Evading Watermarking-based Detection
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This Lecture

* Uncertainty and Robustness
* Source of Uncertainty
* Measure the Quality of Uncertainty

* Reduce Uncertainty and Enhance Robustness
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What do we mean by Uncertainty?

Return a distribution over predictions rather than a

single prediction.

e Classification: Output label along with its

confidence.

e Regression: Output mean along with its

variance. Y

Good uncertainty estimates quantify when we can

trustthe model’s predictions.
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What do we mean by Out-of-Distribution Robustness?

.LI.D.  Prest(VsX) = Prrain(YsX)

(Independent and Identically Distributed)

0.0.D. Prest(YsX) # Prrain(YsX) Yf
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What do we mean by Out-of-Distribution Robustness?

1.1.D. Prest(¥sX) = Prrain(YsX)

0.0.D. Prest(YsX) # Prrain(YsX)

Examples of dataset shift:

e Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.
e Open-setrecognition. New classes may appear at test time.
e Label shift. Distribution of labels p(y) changes and p(x]|y) is fixed.
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ImageNet-C: Varying Intensity for Dataset Shift

Clean Severity = 1 Severity = 4
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Increasing dataset shift
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Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.
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https://arxiv.org/abs/1903.12261

ImageNet-C: Varying Intensity for Dataset Shift

Clean Severity = 1

Severity = 2 Severity = 3

Severity = 4 Severity =5
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Increasing dataset shift

[.I.D test set
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Neural networks do not generalize under covariate shift

Clean Severity = 1

Severity = 2 Severity = 3 Severity = 4 Severity = 5

o Accuracy drops with
Increasing shift on

Imagenet-C.
T I
e Butdothe models know E o ; —
that they are less o . ;
accurate?
oo Test i 3 S 3 3 5
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Neural networks do not know when they don’t know

Clean Severity = 1 Severity = 2

Severity = 3 Severity = 4 Severity = 5
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o Accuracy drops with increasing
shift on Imagenet-C
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Models assign high confidence predictions to OOD inputs

Example images where model assigns >99.5% confidence.
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Image source: “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images” Nguven et al. 2014
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https://arxiv.org/abs/1412.1897

Healthcare (1)

True label
A. HEALTHY B. DISEASED
Healthy | Diseased
\Hemorrhages
.' Predicted | Healthy 0 10
label
Diseased 1 0

Diabetic retinopathy detection from fundus images Gulshan et al, 2016

Cost-sensitive decision making
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https://jamanetwork.com/journals/jama/fullarticle/2588763

Healthcare (2)

o Use model uncertainty to decide when to trust the model or to defer to a human.

. . . I t
o Reject low-quality inputs. nIIU
A. HEALTHY B. DISEASED -
\Hemorrhages l

Confidence > Threshold

7N

Trust model Defer to
predictions Human

§

Diabetic retinopathy detection from fundus images Gulshan et al, 2016
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https://jamanetwork.com/journals/jama/fullarticle/2588763

Self-driving Cars

Dataset shift:

o« Time ofday/ Lighting
o Geographical location (City vs suburban)
o Changing conditions (Weather / Construction)

Image credit: Sun et al, Waymo Open Dataset
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https://waymo.com/open/about/

Open Set Recognition

1200 1 1 1 1
Time of training
algorithm

T - 1000 - ' L
. Example: Classification of Known classes - !
(In-distribution) :

genomic sequences 8001 Bacillus Escherichia - | | i
CCOCCC TATTCCGCGCC |
. CCCOATMACCCS o CCCOTATICGC |

6004 \ J | L

400 -~

200 -

Total number of bacteria classes

1995 2000 2005 2010 2015 2020
Year

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html
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https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

Open Set Recognition

. Example: Classification of
genomic sequences

. High accuracy on known
classes is not sufficient

. Need to be able to detect inputs
that do not belong to one of the

known classes

11/18/24
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Conversational Dialog Systems

o Detecting out-of-scope utterances

@ What is my balance?

You have $1,847.51
across your 3 accounts.

How are my sports teams
doing?

Your last payday was on
the 1st of November.

Who has the
in the NBA?

best record
Sorry, | can only answer
questions about banking.

Figure 1: Example exchanges between a user (blue,
right side) and a task-driven dialog system for personal
finance (grey, left side). The system correctly identi-
fies the user’s query in (1), but in @ the user’s query
is mis-identified as in-scope, and the system gives an
unrelated response. In @ the user’s query is correctly
identified as out-of-scope and the system gives a fall-
back response.

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction”

11/18/24
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https://arxiv.org/abs/1909.02027

Uncertainty in Other Areas

Safety Decision making Active learning
Lifelong learning
Uncertainty &
Open-set Out-of-Distribution Reinforcement
recognition Robustness learning
Graceful Trustworthy Bayesian
failure ML optimization

All models are wrong, but models that know when they are wrong, are useful.
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This Lecture

* Source of Uncertainty

11/18/24

CIS6930 Trustworthy Al Systems
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Sources of uncertainty: Model uncertainty

« Many models can fit the training data well
« Also known as epistemic uncertainty
« Model uncertainty is “reducible”
o Vanishes in the limit of infinite data o,

(SUbjeCt to mOdeI identifiability) ................................................... ...................................................

11/18/24 CIS6930 Trustworthy Al Systems 20



Sources of uncertainty: Model uncertainty

Many models can fit the training data well
Also known as epistemic uncertainty
Model uncertainty is “reducible”
o Vanishes in the limit of infinite data (subject
to model identifiability)
Models can be from same hypotheses class (e.g.

linear classifiers in top figure) or belong to

different hypotheses classes (bottom figure)
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Sources of uncertainty: Data uncertainty

Labeling noise (ex: human disagreement) -

Measurement noise (ex: imprecise tools)

Missing data (ex: partially observed features,

unobserved confounders)

Also known as aleatoric uncertainty

Data uncertainty is “irreducible*”

o Persists even in the limit of infinite data

o *Could be reduced with additional &

Image source: Battleday et al. 2019 “Improving machine

featu res/wews classification using human uncertainty measurements”

11/18/24 CIS6930 Trustworthy Al Systems
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https://openreview.net/forum?id=rJl8BhRqF7

This Lecture

* Measure the Quality of Uncertainty

11/18/24 CIS6930 Trustworthy Al Systems
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How do we measure the quality of uncertainty?

Calibration Error = | Confidence - Accuracy |

predicted probability of observed frequency of
correctness correctness

11/18/24 CIS6930 Trustworthy Al Systems
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How do we measure the quality of uncertainty?

Calibration Error = |Confidence - Accuracy|

Of all the days where the model predicted rain with
]G
80% probability, what fraction did we observe rain? 1 6 |

o 80% implies perfect calibration
« Lessthan 80% implies model is overconfident =~ = =

« Greater than 80% implies model is under-confident

11/18/24 CIS6930 Trustworthy Al Systems
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How do we measure the quality of uncertainty?

For regression, calibration corresponds to coverage in a confidence interval.

Expected Calibration Error [Naeini+ 2015]:

B
ECE = bz_; % lacc(b) — conf(b)]
Bin the probabilities into B bins.

Compute the within-bin accuracy and within-bin predicted confidence.

Average the calibration error across bins (weighted by number of points in each bin).

11/18/24 CIS6930 Trustworthy Al Systems 26


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

How do we measure the quality of uncertainty?

LeNet (1998) ReCsNet (2016)
. . . IFAR-
Expected Calibration Error e —
g & 5 8
[Naeini+ 2015]- T o R
206 End S 5y
z g5 < < §
s :
ECE = E — |acc(b) — conf(b)| = ™ "3
& 0.2 : l
b—l 1 i
0.0
l00.0 0.2 04 06 08 1.0 00 0.2 04 06 0.8 1.0
. Bl Outputs - Outputs _
0.8 Gap Gap V.
> .
8 06 Confidence > Accuracy
2 0.4
, ' | => Qverconfident
Confidence < Accuracy,, | ISreor=30.6

00 0.2 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
Confidence

=> Underconfident

Image source: Guo+ 2017 “On calibration of modern neural networks”
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599

How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

B
ECE = % \ace(b) — conf b)
N

b=1
Note: Does not reflect accuracy.

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True 0 0 0 0 0 0 0 1 1 1 Accurate? Calibrated?

label

Model 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ) 4
prediction
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

How do we measure the quality of robustness?

Measure generalization to a large collection of real-world shifts. A large collection of tasks
encourages general robustness to shifts (ex: GLUE for NLP).

o Novel textures in object recognition.
o Covariate shift (e.g. corruptions).
o Different sub-populations (e.g. geographical location).

Cartoon
Different renditions Nearby video frames Multiple objects and poses
(ImageNet-R) (ImageNet-Vid-Robust, YTBB-Robust) (ObjectNet)

11/18/24 CIS6930 Trustworthy Al Systems 29


https://gluebenchmark.com/

This Lecture

* Reduce Uncertainty and Enhance Robustness

11/18/24 CIS6930 Trustworthy Al Systems
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Neural Networks with SGD (1)

Nearly all models find a single setting of parameters to maximize the probability conditioned on
data.

CEmmEE

| |

0" = argmaxp(6 | x,y)

s
N
[
B
I
W
i

= arg min — log p(y | x,0) — log p(6)

__* . 1 9 2
argmgmzk:yk og Py + 6]

Spetiat’ease: softmax cross entropy with ¢ e gdariraticre@ptimize with SGD!
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Neural Networks with SGD (2)

Nearly all models find a single setting of parameters to maximize the probability conditioned on

data.
THAEEEE
.

0" = argmaxp(6 | x,y)

= arg mgiﬂ — logp(y | X, 9) o 1ng(9)

|

Data uncertainty

Spetiat’ease: softmax cross entropy with ¢ e gdariraticre@ptimize with SGD!

32



Neural Networks with SGD (3)

9*\— arg max p(6 | x,y)
Problem: results in just one prediction per example
*No model uncertainty*

=
]
]

S EEEE s
"

| | e

How do we get uncertainty?
e Probabilistic approach
o Estimate a full distribution for

e Intuitive approach: Ensembling
o Obtain multiple good settings for @*

11/18/24 CIS6930 Trustworthy Al Systems
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Probabilistic Machine Learning

Model: A probabilistic model is a joint distribution of outputs y and parameters @ given inputs x.

o Py, 0]x) |
Training time: Calculate the posterior, the conditional distribution of parameters given
observations.

ply,0|x)  ply|x)p(0)
p(y|x)  [ply.0]|x)d6

Prediction time: Compute the likelihood given parameters, each parameter configuration of which is
weighted by the posterior.

p(@|x.y) =

S
! @
py|x.D) = [ ply |x.0)p(6]D) 40 ~ 5> ply|x.6%)
s=1
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Bayesian Neural Networks

p(ri) = Normal
) . .. . p(ri) = Cauchy; p(w;) = Horseshoe
Bayesian neural nets specify a distribution over p(r?) = InverseGamma; p(w;) =T

neural network predictions. p(w;) = Normal

This is done by specifying a distribution over neural
network weights

We can reason about uncertainty in models away
from the datal

-4 -2 0 2 +

Image source: Dusenberry+ 2020

w
e
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https://arxiv.org/abs/2005.07186

Va riational |nfe rence (VI) »(8(D) D is a collection of possible models

/" KL(q(6; A") || p(0| D))

e VI casts posterior inference as an optimization problem.

- Posit a family of variational distributions over suct@is mean-field,

q(0: X) = Hrj(f‘);; Ai)

7
- Optimize a divergence measure (such as KL) with respect to A to be close to the posterior.
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Bayesian Neural Networks with SGD

The loss function in variational inference is

L(A) = —Eyo.n logp(y [x.6)] + KL(q(8; A) || p(6))

Sample from q to Monte Carlo estimate the expectation. Take gradients for SGD.

Likelihood view. The negative of the loss is a lower bound to the marginal likelihood.

—L(A) < logp(y | x) forall A € A

Code length view. Minimize the # of bits to explain the data, while trying not to pay many

bits when deviating from the prior.
Check out [Approximate Inference Symposium, Jan 2021]

11/18/24 CIS6930 Trustworthy Al Systems 37


http://approximateinference.org/

Ensemble Learning

e A prior distribution often involves the complication of approximate inference.

e Ensemble learning offers an alternative strategy to aggregate the predictions over a
collection of models.

e Often winner of competitions!

e There are two considerations: the collection of models to ensemble; and the
aggregation strategy.

Popular approach is to average predictions of independently trained models, forming a
mixture distribution.

K
1
n(y|X) = — (v |x, 0}
p(y [ x) Kz;r(y\ 6
k=1
Many approaches exist: bagging, boosting, decision trees, stacking.
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Monte Carlo Dropout

(b) After applying dropout.

a) Standard Neural Net

Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
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Deep Ensembles

ldea: Just re-run standard SGD training
but with different random seeds and
average the predictions

« Awell known trick for getting
better accuracy and Kaggle
scores

« Werely onthe fact that the loss
landscape is hon-convexto land
at different solutions

o Rely on different
initializations and SGD noise

Combine predictions of M models

Randomly Randomly Randomly

Initialize & Initialize & Initialize &
Train Net 1 Train Net 2 Train Net M

~ ”

Randomly Shuffle Dataset M times

L

Inputs

11/18/24 CIS6930 Trustworthy Al Systems 40




Hyperparameter Ensembles

Deep ensembles differ only in random seed. By expanding the space of
hyperparameters we average over, we can get even better accuracy &

uncertainty estimates.

« Runrandom search to generate a set of

models.

o Include random seed as part of the

search space.

. Greedily select the K models to pool.

11/18/24
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Accuracy
o 8
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o N
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- strat. hyper ensemble
deep ensemble

2 4 6 8 10 12 14 16
Ensemble size

N
S

o
o)

Cross entropy
o
(o))
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Efficient Ensembles by Sharing Parameters (1)

Parameterize each weight matrix as a new weight matrix W
multiplied by the outer product of two vectors r and s.

W, =W o F;, where F; = st-fr‘T

)
There is an independent set of r and s vectors for each
ensemble member; W is shared.

Known as BatchEnsemble.
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Efficient Ensembles by Sharing Parameters (2)

BatchEnsemble has a convenient vectorization.

Duplicate each example in a given mini-batch K times.

Y = ¢ (((X 0 S)W)oR)

The model yields K outputs for each example.

Can interpret rank-1 weight perturbations as feature-
wise transformations.

11/18/24 CIS6930 Trustworthy Al Systems 43



Bayes vs Ensembles: What'’s the difference?

Both aggregate predictions over a collection of models. There are two core distinctions.

The space of models.

Bayes posits a prior that weighs different Ensembles weigh functions equally a priori and
probability to different functions, and over an use a finite collection

infinite collection of functions.

Model aggregation.
Bayesian models apply averaging, weighted by Ensembles can apply any strategy and have non-
the posterior. probabilistic interpretations.

In the community, it’s popular to cast one as a “special case” of the other, under trivial settings.
However, Bayes and ensembles are critically different mindsets.

Bavesian model averaging is not model combination. Minka 2002
Bayesian Deep Ensembles via the Neural Tangent Kernel. He, Lakshminarayanan, Teh, NeurlPS 2020
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https://tminka.github.io/papers/minka-bma-isnt-mc.pdf
https://arxiv.org/abs/2007.05864

Simple Baseline: Recalibration

For classification, modify softmax probabilities Uncal. - CIFAR-10 Temp. Scale - CIFAR-10
post-hoc. i % ResNet-110 (SD) ResNet-110 (SD)

Bl Outputs
1 Gap

Bl Outputs
| Gap

Temperature Scaling. 0.8

1. Parameterize output layer with scalar T. §0.6
3
|z) =
E;,-' exp(z;/T) 0.2
.. : 0.0 :
Minimize loss with respect to T on a separate 00 02 04 0.6 08 1.0 00 02 04 06 08 1.0

“recalibration” dataset.

Image source: Guo+ 2017 “On calibration of modern neural networks”

Caveat: Dataset shift...
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https://arxiv.org/abs/1706.04599

Uncertainty Baselines —

High-quality implementations of baselines on a
variety of tasks.

Ready for use: 7 settings, including:

« Wide ResNet 28-10 on CIFAR
« ResNet-50 and EfficientNet on ImageNet
« BERT on Clinc Intent Detection

Wide ResNet 28-10 on CIFAR

14 different baseline methods. CIFAR-10

cNLL/cA/cCE

Used across 10 projects at Google.

Collaboration with OATML @ Oxford, unifying
github.com/oatml/bdl-benchmarks.
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http://github.com/oatml/bdl-benchmarks
http://google3/third_party/py/edward2/baselines/cifar

Robusthess Metrics

github.com/google-research/robustness metrics

Lightweight modules to evaluate a model’s robustness and
uncertainty predictions.

ImageNet 1.0 .93 .93 .99 .84 .88 .85

Ready for use: imageNet-A
ImageNet-C

« 10 OOD datasets ImageNet-V2
o Accuracy, uncertainty, and stability metrics S
. Many SOTA models (TFHub support!) e

o Multiple frameworks (JAX support!) —

YouTube-BB-W

Enables large-scale studies of robustness

<

[Djolonga+ 2020]. &

&

.93
.99
.84
.88
.85 .
.89 .
.84 .

Collaboration lead by Google Research, Brain Team @ Zurich.

11/18/24 CIS6930 Trustworthy Al Systems

.92
.80
.93

&

.93 1.0 .97 .92 88 .93 89
.97 1.0 .93 .83 .94 .89
.93 1.0 .86 .91 .88
.83 .86 1.0 .86 .79
.94 91 .86 1.0 .96
.89 .88 .79 .96 1.0
.94 .90 .86 .97 .94 1.0
.91 .85 .80 .97 .96 .97 1.0

.89
.94
.94
.90
.86
.97
.94

.84
.90
91
.85
.80
.97
.96
.97

Spearman rank correlation

47


https://arxiv.org/abs/2007.08558
http://github.com/google-research/robustness_metrics

References

* Practical Uncertainty Estimation & Out-of-Distribution

Robustnhess in Deep Learning
* Video: https://slideslive.com/38935801/practical-uncertainty-estimation-
outofdistribution-robustness-in-deep-learning
* Link: https://neurips.cc/Conferences/2020/Schedule?showEvent=16649
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